Analysis of the n - dimensional quadtreedecomposition for arbitrary hyper - rectanglesChristos
نویسندگان
چکیده
We give a closed-form expression for the average number of n-dimensional quadtree nodes (`pieces' or`blocks') required by an n-dimensional hyper-rectangle aligned with the axes. Our formula includes as special cases the formulae of previous eeorts for 2-dimensional spaces 8]. It also agrees with theoretical and empirical results that the number of blocks depends on the hyper-surface of the hyper-rectangle and not on its hyper-volume. The practical use of the derived formula is that it allows the estimation of the space requirements of the n-dimensional quadtree decomposition. Quadtrees are used extensively in 2-dimensional spaces (geographic information systems and spatial databases in general), as well in higher dimensionality spaces (as oct-trees for 3-dimensional spaces, e.g. in graphics, robotics and 3-dimensional medical images 2]). Our formula permits the estimation of the space requirements for data hyper-rectangles when stored in an index structure like a (n-dimensional) quadtree, as well as the estimation of the search time for query hyper-rectangles. A theoretical contribution of the paper is the observation that the number of blocks is a piece-wise linear function of the sides of the hyper-rectangle.
منابع مشابه
Analysis of the n - dimensional quadtreedecomposition for arbitrary
We give a closed-form expression for the average number of n-dimensional quadtree nodes (`pieces' or`blocks') required by an n-dimensional hyper-rectangle aligned with the axes. Our formula includes as special cases the formulae of previous eeorts for 2-dimensional spaces 8]. It also agrees with theoretical and empirical results that the number of blocks depends on the hyper-surface of the hype...
متن کاملHyper-tubes of hyper-cubes
Hyper-tubes consisting of hyper-cubes of n-dimensions were designed and formulas for substructures of vary dimensions established.
متن کاملA New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)
Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...
متن کاملAnalysis of the N-dimensional Quadtree Decomposition for Arbitrary Hyper-rectangles
We give a closed-form expression for the average number of n-dimensional quadtree nodes (`pieces' or`blocks') required by an n-dimensional hyper-rectangle aligned with the axes. Our formula includes as special cases the formulae of previous eeorts for 2-dimensional spaces 8]. It also agrees with theoretical and empirical results that the number of blocks depends on the hyper-surface of the hype...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کامل